The Metaverse and Web Design: Immersive Experiences
Okay, so like, the Metaverse and web design, right? Best Parramatta Website Design NSW. Its kinda blowing up, especially when were thinkin bout Parramatta Web and whats gonna be hot in 2025. Forget boring old websites; were talking immersive experiences! (Think less scrolling, more doing).
It isn't just about pretty pictures anymore. Were needin to build digital spaces that feel, well, almost real. Users wont just passively consume information; they'll interact, explore, and even, gasp, create stuff! Imagine a Parramatta business showcasing their products in a virtual showroom, where folks can virtually "try" things out before buyin em. Cool, huh?
Web designs role is crucial here. It aint just about aesthetics, though thats still important, of course. Its bout crafting intuitive interfaces that work seamlessly within these metaverse environments. No one wants clunky navigation thats frustrating! Usability is king, queen, and the whole darn royal family.
And, uh, we can't ignore accessibility. The metaverse must be inclusive, not exclusive. We gotta ensure folks with disabilities can fully participate, which means thinkin bout things like alternative input methods and adjustable visual settings. Its not fair if some are left out, ya know?
So, yeah, the Metaverse is a game-changer for Parramatta Web. Its pushin designers to think outside the box, to create experiences that are engaging, accessible, and, above all, human. Its gonna be wild!
AI-Powered Design Tools: Automation and Personalization
Hey there! So, when it comes to Parramatta web design for 2025, were seeing some pretty exciting developments, especially with AI-powered design tools. These tools arent just about saving time though; theyre offering a whole new level of automation and personalization thats shaking things up in the digital world.
Imagine this: youve got a website, but you dont have a designer on hand. No problem! AI-powered tools can help automate the process. They can analyze your site, suggest improvements, and even create new designs without you lifting a finger. Its like having a virtual assistant who never sleeps!
But heres the kicker - these tools arent replacing designers. Instead, theyre augmenting their work, allowing them to focus more on creativity and strategy rather than getting bogged down by mundane tasks. Its a win-win situation!
Now, personalization is another big trend that AI is making waves in. Gone are the days when one size fits all when it comes to web design. With AI, websites can now adapt to individual users based on their behavior, preferences, and even location. This means that instead of just seeing a generic homepage, visitors to a Parramatta site in 2025 might see something tailored specifically to them!
Of course, not everyone is jumping on the AI bandwagon. Some designers argue that the emotional connection and unique touch a human can bring is irreplaceable. And theyre right, to an extent. AI might be able to spit out some great designs quickly, but it cant replicate the human intuition and creativity that goes into crafting truly exceptional user experiences.
In conclusion, while AI-powered design tools are definitely shaping the future of Parramatta web design, theyre not doing so at the expense of human designers. Instead, theyre enhancing the capabilities of both designers and their clients, pushing the boundaries of whats possible on the web in 2025!
Sustainable Web Design: Eco-Conscious Practices
Hey there! So, when it comes to Parramatta Web and its latest design trends for 2025, sustainability is really making a splash! You know, were not just talking about flashy graphics and smooth animations; were talking about eco-conscious practices that wont leave our planet gasping for air. Its like, who knew web design could be so green?
First off, lets talk about energy efficiency. You see, not all hosting services are created equal. Some are way more power-hungry than others. So, going with a provider that uses renewable energy sources is a no-brainer. Its like, why burn fossil fuels when you can harness the sun or wind?
And then theres the issue of data centers. Theyre huge energy guzzlers, right? But some companies are working on making their data centers more sustainable. Its like, theyre not just storing your data; theyre storing it in a way that doesn't trash the environment. Imagine that!
But its not just about the backend.
Parramatta Web: Latest Design Trends for 2025 - Parramatta multi page website design experts
Parramatta responsive ecommerce web design
Parramatta nonprofit organisation web design
Frontend design plays a role too. For instance, high-resolution images look great, but they suck up a lot of bandwidth and energy. So, using more efficient image formats, like WebP or AVIF, can make a big difference. Its like, you get the same quality, but with a lighter carbon footprint.
Another thing to consider is the lifespan of your website. A site that's easy to update and redesign can last longer without needing a complete overhaul. Think of it like buying a quality piece of furniture that can last for years instead of a cheap one that falls apart after a couple of months.
Oh, and lets not forget about user experience. A site that loads quickly and smoothly not only improves user satisfaction but also saves energy. Its like, everyone wins!
But heres the thing: sustainable web design isnt about sacrifice. Its about making smart choices that benefit both people and the planet. And with companies like Google pushing for more eco-friendly practices in web development, its becoming easier to do the right thing.
So, when youre thinking about the latest web design trends for Parramatta in 2025, remember that sustainability isn't just a buzzword; its a necessity. Its like, we cant afford to keep ignoring the impact our digital habits have on the environment. After all, a beautiful website is great, but a planet thats not is even better!
Micro-Interactions and Animations: Enhancing User Engagement
In the ever-evolving world of web design, the concept of micro-interactions and animations is becoming increasingly important. It's not just about aesthetics anymore; it's about enhancing user engagement in meaningful ways. As we look towards 2025, especially in a vibrant place like Parramatta, these trends could redefine how users interact with websites.
Micro-interactions refer to those small moments when users engage with a product or service. They might seem trivial, but they can have a huge impact on user experience! Think about when you like a post on social media or receive a notification. Those little animations, like a heart popping up or a subtle color change, provide feedback that makes users feel connected. It's like a tiny conversation happening between the user and the interface, and it can't be overlooked.
Animations play a crucial role in this process. They can guide users through a website, showing them where to click or how to navigate. The smooth transitions, like when a menu slides down or an image fades in, make the experience feel more cohesive. Users don't want to feel lost or confused; they want to know what's happening at every step. And guess what? Animations can help with that!
Now, some might argue that too much animation could be distracting, but that's not necessarily true. It's all about balance. A well-placed animation can lead users to explore more, while excessive or unnecessary ones can make them feel overwhelmed. It's a fine line, but when done right, micro-interactions and animations can significantly enhance user engagement.
Looking ahead to 2025, Parramatta's web design scene is likely to embrace these trends wholeheartedly. With a focus on local culture and community, designers can create unique experiences that resonate with users. The aim should be to craft websites that not only inform but also delight visitors. After all, who doesn't want to feel something when they're browsing online?
In conclusion, as we move toward the future, micro-interactions and animations will be key elements in web design. They're not just fancy embellishments; they're tools for connection and engagement. By keeping these trends in mind, Parramatta can lead the way in creating websites that users love to interact with. Who wouldn't want to be a part of that?
Bold Typography and Asymmetrical Layouts: Visual Impact
Parramattas web scene aint gonna be boring in 25, no sir! Were talking visual impact! Bold typography, I mean really bold, is gonna be slapping you in the face (in a good way, of course). Think huge fonts, maybe even custom lettering, that scream "look at me!" Its not just about readability, but about making a statement. You know, a vibe!
And forget those symmetrical grids of yesteryear.
Parramatta Web: Latest Design Trends for 2025 - Parramatta nonprofit organisation web design
Parramatta web design for medical clinics
Parramatta multi page website design experts
Parramatta web design for healthcare providers
Parramatta UX UI design agency
Asymmetrical layouts are where its at! Designers arent afraid to break the rules, placing elements in unconventional spots to create a dynamic, engaging experience. Its like, why have everything lined up all neat and tidy when you can have a controlled chaos that grabs attention?!
This combo (bold typography and asymmetrical layouts), it isnt just a trend, its a whole mood. Its about being different, being memorable, and showing off Parramattas unique identity in the digital world. It shouldnt be ignored! Designers shouldnt shy away from these powerful tools. They should use them to make websites that are visually stunning and user-friendly. Gosh, I am excited about it!
Voice User Interface (VUI) Integration: Conversational Design
As we look ahead to 2025, the landscape of web design, particularly in places like Parramatta, is set to undergo some exciting transformations! One of the standout trends is the integration of Voice User Interfaces (VUI). It's not just about pretty visuals anymore; it's about creating a truly conversational experience for users.
Incorporating VUI into web design isn't something many designers have fully embraced yet. However, it's becoming clear that people prefer engaging with their devices through voice. Think about it. When you ask your phone for directions or play a song, it's seamless and intuitive. This kind of interaction can be applied to websites too! Imagine a visitor to a Parramatta local business website being able to ask questions about services or get recommendations just by speaking. How cool is that?
Conversational design isn't merely about making things talk; it's about understanding user intent and context. Designers will need to think differently-no longer can they just focus on aesthetics and layout. They'll have to consider how a voice might change a user's journey through a site. Maybe a user wants to book a table at a restaurant but doesn't want to fill out a long form.
Parramatta Web: Latest Design Trends for 2025 - Parramatta responsive ecommerce web design
With VUI, they could just say what they need, and voila! The site responds accordingly.
Moreover, VUI can also enhance accessibility. Not everyone's comfortable typing or navigating through multiple menus. So, by integrating voice capabilities, designers can make websites much more user-friendly for people with disabilities or older adults who might struggle with traditional interfaces. Its a win-win!
Of course, there are challenges to consider. Not all users will be on board with talking to their devices in public spaces. Plus, how do you ensure that the voice interaction feels natural and isn't frustrating? That's where thoughtful conversational design comes in. It's about crafting dialogues that feel human and relatable.
In conclusion, as Parramatta embraces these latest design trends for 2025, VUI integration stands out as a promising development. It's not just about keeping up with technology; it's about enhancing user experience in ways that were previously unimaginable. So, let's get ready for a future where we can simply talk our way through the web!
Augmented Reality (AR) Overlays: Interactive Web Experiences
As we look ahead to 2025, the landscape of web design is set to undergo some pretty exciting changes, particularly in places like Parramatta. One of the most buzzworthy trends is definitely Augmented Reality (AR) overlays. These interactive web experiences are not just a gimmick; they're transforming the way we engage with digital content.
You might be wondering, what exactly are AR overlays? Well, they're basically enhancements that overlay digital information onto the real world. Imagine walking down a street in Parramatta and pointing your phone at a building to see its history pop up right in front of you! It's like magic, but it's really just clever tech at work. Designers are starting to incorporate these features into websites, making them more engaging and fun.
But here's the thing: its not just about adding flashy visuals.
Parramatta Web: Latest Design Trends for 2025 - Parramatta responsive ecommerce web design
Parramatta web design offering custom domain setup
Parramatta website design for community groups
Parramatta SEO friendly website design
Parramatta web design for freelance professionals
The true power of AR overlays lies in their interactivity. Users can, for instance, manipulate 3D models or explore virtual spaces that relate to local businesses or attractions. This kind of immersive experience can't be overlooked. It's sure to draw more visitors to the area, and it's not something you want to miss out on!
In Parramatta, where culture and history blend seamlessly with modern life, AR can help tell stories in ways that traditional media simply can't. It's a way to connect the past with the present, allowing visitors and locals alike to experience the citys rich heritage in an innovative way. Plus, it encourages exploration-who wouldn't want to discover new things about their surroundings?
However, there are challenges to consider. Not everyone has access to the latest tech, and it's crucial that these experiences are inclusive. It's vital that designers think about how to make AR overlays accessible for everyone, not just those with the newest gadgets.
In conclusion, as we move towards 2025, the integration of AR overlays into web design is set to reshape how we interact with our environments, especially in vibrant places like Parramatta. The future's looking bright, and it's safe to say that we're only scratching the surface of what's possible! So keep an eye out-things are about to get really interesting!
This article is about the global system of pages accessed via HTTP. For the worldwide computer network, see Internet. For the web browser, see WorldWideWeb.
The World Wide Web (also known as WWW or simply the Web[1]) is an information system that enables content sharing over the Internet through user-friendly ways meant to appeal to users beyond IT specialists and hobbyists.[2] It allows documents and other web resources to be accessed over the Internet according to specific rules of the Hypertext Transfer Protocol (HTTP).[3]
The Web was invented by English computer scientist Tim Berners-Lee while at CERN in 1989 and opened to the public in 1993. It was conceived as a "universal linked information system".[4][5][6] Documents and other media content are made available to the network through web servers and can be accessed by programs such as web browsers. Servers and resources on the World Wide Web are identified and located through character strings called uniform resource locators (URLs).
The original and still very common document type is a web page formatted in Hypertext Markup Language (HTML). This markup language supports plain text, images, embedded video and audio contents, and scripts (short programs) that implement complex user interaction. The HTML language also supports hyperlinks (embedded URLs) which provide immediate access to other web resources. Web navigation, or web surfing, is the common practice of following such hyperlinks across multiple websites. Web applications are web pages that function as application software. The information in the Web is transferred across the Internet using HTTP. Multiple web resources with a common theme and usually a common domain name make up a website. A single web server may provide multiple websites, while some websites, especially the most popular ones, may be provided by multiple servers. Website content is provided by a myriad of companies, organizations, government agencies, and individual users; and comprises an enormous amount of educational, entertainment, commercial, and government information.
The Web has become the world's dominant information systems platform.[7][8][9][10] It is the primary tool that billions of people worldwide use to interact with the Internet.[3]
The Web was invented by English computer scientist Tim Berners-Lee while working at CERN.[11][12] He was motivated by the problem of storing, updating, and finding documents and data files in that large and constantly changing organization, as well as distributing them to collaborators outside CERN. In his design, Berners-Lee dismissed the common tree structure approach, used for instance in the existing CERNDOC documentation system and in the Unix filesystem, as well as approaches that relied on tagging files with keywords, as in the VAX/NOTES system. Instead he adopted concepts he had put into practice with his private ENQUIRE system (1980) built at CERN. When he became aware of Ted Nelson's hypertext model (1965), in which documents can be linked in unconstrained ways through hyperlinks associated with "hot spots" embedded in the text, it helped to confirm the validity of his concept.[13][14]
The historic World Wide Web logo, designed by Robert Cailliau. Currently, there is no widely accepted logo in use for the WWW.
The model was later popularized by Apple's HyperCard system. Unlike Hypercard, Berners-Lee's new system from the outset was meant to support links between multiple databases on independent computers, and to allow simultaneous access by many users from any computer on the Internet. He also specified that the system should eventually handle other media besides text, such as graphics, speech, and video. Links could refer to mutable data files, or even fire up programs on their server computer. He also conceived "gateways" that would allow access through the new system to documents organized in other ways (such as traditional computer file systems or the Usenet). Finally, he insisted that the system should be decentralized, without any central control or coordination over the creation of links.[5][15][11][12]
Berners-Lee submitted a proposal to CERN in May 1989, without giving the system a name.[5] He got a working system implemented by the end of 1990, including a browser called WorldWideWeb (which became the name of the project and of the network) and an HTTP server running at CERN. As part of that development he defined the first version of the HTTP protocol, the basic URL syntax, and implicitly made HTML the primary document format.[16] The technology was released outside CERN to other research institutions starting in January 1991, and then to the whole Internet on 23 August 1991. The Web was a success at CERN, and began to spread to other scientific and academic institutions. Within the next two years, there were 50 websites created.[17][18]
Berners-Lee founded the World Wide Web Consortium (W3C) which created XML in 1996 and recommended replacing HTML with stricter XHTML.[27] In the meantime, developers began exploiting an IE feature called XMLHttpRequest to make Ajax applications and launched the Web 2.0 revolution. Mozilla, Opera, and Apple rejected XHTML and created the WHATWG which developed HTML5.[28] In 2009, the W3C conceded and abandoned XHTML.[29] In 2019, it ceded control of the HTML specification to the WHATWG.[30]
The World Wide Web has been central to the development of the Information Age and is the primary tool billions of people use to interact on the Internet.[31][32][33][10]
Tim Berners-Lee states that World Wide Web is officially spelled as three separate words, each capitalised, with no intervening hyphens.[34] Use of the www prefix has been declining, especially when web applications sought to brand their domain names and make them easily pronounceable. As the mobile web grew in popularity,[35] services like Gmail.com, Outlook.com, Myspace.com, Facebook.com and Twitter.com are most often mentioned without adding "www." (or, indeed, ".com") to the domain.[36]
In English, www is usually read as double-u double-u double-u.[37] Some users pronounce it dub-dub-dub, particularly in New Zealand.[38]Stephen Fry, in his "Podgrams" series of podcasts, pronounces it wuh wuh wuh.[39] The English writer Douglas Adams once quipped in The Independent on Sunday (1999): "The World Wide Web is the only thing I know of whose shortened form takes three times longer to say than what it's short for".[40]
The World Wide Web functions as an application layerprotocol that is run "on top of" (figuratively) the Internet, helping to make it more functional. The advent of the Mosaic web browser helped to make the web much more usable, to include the display of images and moving images (GIFs).
The terms Internet and World Wide Web are often used without much distinction. However, the two terms do not mean the same thing. The Internet is a global system of computer networks interconnected through telecommunications and optical networking. In contrast, the World Wide Web is a global collection of documents and other resources, linked by hyperlinks and URIs. Web resources are accessed using HTTP or HTTPS, which are application-level Internet protocols that use the Internet transport protocols.[3]
Viewing a web page on the World Wide Web normally begins either by typing the URL of the page into a web browser or by following a hyperlink to that page or resource. The web browser then initiates a series of background communication messages to fetch and display the requested page. In the 1990s, using a browser to view web pages—and to move from one web page to another through hyperlinks—came to be known as 'browsing,' 'web surfing' (after channel surfing), or 'navigating the Web'. Early studies of this new behaviour investigated user patterns in using web browsers. One study, for example, found five user patterns: exploratory surfing, window surfing, evolved surfing, bounded navigation and targeted navigation.[41]
The following example demonstrates the functioning of a web browser when accessing a page at the URL http://example.org/home.html. The browser resolves the server name of the URL (example.org) into an Internet Protocol address using the globally distributed Domain Name System (DNS). This lookup returns an IP address such as 203.0.113.4 or 2001:db8:2e::7334. The browser then requests the resource by sending an HTTP request across the Internet to the computer at that address. It requests service from a specific TCP port number that is well known for the HTTP service so that the receiving host can distinguish an HTTP request from other network protocols it may be servicing. HTTP normally uses port number 80 and for HTTPS it normally uses port number 443. The content of the HTTP request can be as simple as two lines of text:
GET/home.htmlHTTP/1.1Host:example.org
The computer receiving the HTTP request delivers it to web server software listening for requests on port 80. If the web server can fulfil the request it sends an HTTP response back to the browser indicating success:
followed by the content of the requested page. Hypertext Markup Language (HTML) for a basic web page might look like this:
<html><head><title>Example.org – The World Wide Web</title></head><body><p>The World Wide Web, abbreviated as WWW and commonly known ...</p></body></html>
The web browser parses the HTML and interprets the markup (<title>, <p> for paragraph, and such) that surrounds the words to format the text on the screen. Many web pages use HTML to reference the URLs of other resources such as images, other embedded media, scripts that affect page behaviour, and Cascading Style Sheets that affect page layout. The browser makes additional HTTP requests to the web server for these other Internet media types. As it receives their content from the web server, the browser progressively renders the page onto the screen as specified by its HTML and these additional resources.
Web browsers receive HTML documents from a web server or from local storage and render the documents into multimedia web pages. HTML describes the structure of a web page semantically and originally included cues for the appearance of the document.
HTML elements are the building blocks of HTML pages. With HTML constructs, images and other objects such as interactive forms may be embedded into the rendered page. HTML provides a means to create structured documents by denoting structural semantics for text such as headings, paragraphs, lists, links, quotes and other items. HTML elements are delineated by tags, written using angle brackets. Tags such as <img/> and <input/> directly introduce content into the page. Other tags such as <p> surround and provide information about document text and may include other tags as sub-elements. Browsers do not display the HTML tags, but use them to interpret the content of the page.
HTML can embed programs written in a scripting language such as JavaScript, which affects the behaviour and content of web pages. Inclusion of CSS defines the look and layout of content. The World Wide Web Consortium (W3C), maintainer of both the HTML and the CSS standards, has encouraged the use of CSS over explicit presentational HTML since 1997.[update][43]
Most web pages contain hyperlinks to other related pages and perhaps to downloadable files, source documents, definitions and other web resources. In the underlying HTML, a hyperlink looks like this: <ahref="http://example.org/home.html">Example.org Homepage</a>.
Graphic representation of a minute fraction of the WWW, demonstrating hyperlinks
Such a collection of useful, related resources, interconnected via hypertext links is dubbed a web of information. Publication on the Internet created what Tim Berners-Lee first called the WorldWideWeb (in its original CamelCase, which was subsequently discarded) in November 1990.[44]
The hyperlink structure of the web is described by the webgraph: the nodes of the web graph correspond to the web pages (or URLs) the directed edges between them to the hyperlinks. Over time, many web resources pointed to by hyperlinks disappear, relocate, or are replaced with different content. This makes hyperlinks obsolete, a phenomenon referred to in some circles as link rot, and the hyperlinks affected by it are often called "dead" links. The ephemeral nature of the Web has prompted many efforts to archive websites. The Internet Archive, active since 1996, is the best known of such efforts.
Many hostnames used for the World Wide Web begin with www because of the long-standing practice of naming Internet hosts according to the services they provide. The hostname of a web server is often www, in the same way that it may be ftp for an FTP server, and news or nntp for a Usenetnews server. These hostnames appear as Domain Name System (DNS) or subdomain names, as in www.example.com. The use of www is not required by any technical or policy standard and many websites do not use it; the first web server was nxoc01.cern.ch.[45] According to Paolo Palazzi, who worked at CERN along with Tim Berners-Lee, the popular use of www as subdomain was accidental; the World Wide Web project page was intended to be published at www.cern.ch while info.cern.ch was intended to be the CERN home page; however the DNS records were never switched, and the practice of prepending www to an institution's website domain name was subsequently copied.[46][better source needed] Many established websites still use the prefix, or they employ other subdomain names such as www2, secure or en for special purposes. Many such web servers are set up so that both the main domain name (e.g., example.com) and the www subdomain (e.g., www.example.com) refer to the same site; others require one form or the other, or they may map to different web sites. The use of a subdomain name is useful for load balancing incoming web traffic by creating a CNAME record that points to a cluster of web servers. Since, currently[as of?], only a subdomain can be used in a CNAME, the same result cannot be achieved by using the bare domain root.[47][dubious – discuss]
When a user submits an incomplete domain name to a web browser in its address bar input field, some web browsers automatically try adding the prefix "www" to the beginning of it and possibly ".com", ".org" and ".net" at the end, depending on what might be missing. For example, entering "microsoft" may be transformed to http://www.microsoft.com/ and "openoffice" to http://www.openoffice.org. This feature started appearing in early versions of Firefox, when it still had the working title 'Firebird' in early 2003, from an earlier practice in browsers such as Lynx.[48][unreliable source?] It is reported that Microsoft was granted a US patent for the same idea in 2008, but only for mobile devices.[49]
The scheme specifiers http:// and https:// at the start of a web URI refer to Hypertext Transfer Protocol or HTTP Secure, respectively. They specify the communication protocol to use for the request and response. The HTTP protocol is fundamental to the operation of the World Wide Web, and the added encryption layer in HTTPS is essential when browsers send or retrieve confidential data, such as passwords or banking information. Web browsers usually automatically prepend http:// to user-entered URIs, if omitted.[citation needed]
A screenshot of the home page of Wikimedia Commons
A web page (also written as webpage) is a document that is suitable for the World Wide Web and web browsers. A web browser displays a web page on a monitor or mobile device.
The term web page usually refers to what is visible, but may also refer to the contents of the computer file itself, which is usually a text file containing hypertext written in HTML or a comparable markup language. Typical web pages provide hypertext for browsing to other web pages via hyperlinks, often referred to as links. Web browsers will frequently have to access multiple web resource elements, such as reading style sheets, scripts, and images, while presenting each web page.
On a network, a web browser can retrieve a web page from a remote web server. The web server may restrict access to a private network such as a corporate intranet. The web browser uses the Hypertext Transfer Protocol (HTTP) to make such requests to the web server.
A static web page (sometimes called a flat page/stationary page) is a web page that is delivered to the user exactly as stored, in contrast to dynamic web pages which are generated by a web application.
Consequently, a static web page displays the same information for all users, from all contexts, subject to modern capabilities of a web server to negotiatecontent-type or language of the document where such versions are available and the server is configured to do so.
Dynamic web page: example of server-side scripting (PHP and MySQL)
A server-side dynamic web page is a web page whose construction is controlled by an application server processing server-side scripts. In server-side scripting, parameters determine how the assembly of every new web page proceeds, including the setting up of more client-side processing.
A client-side dynamic web page processes the web page using JavaScript running in the browser. JavaScript programs can interact with the document via Document Object Model, or DOM, to query page state and alter it. The same client-side techniques can then dynamically update or change the DOM in the same way.
A dynamic web page is then reloaded by the user or by a computer program to change some variable content. The updating information could come from the server, or from changes made to that page's DOM. This may or may not truncate the browsing history or create a saved version to go back to, but a dynamic web page update using Ajax technologies will neither create a page to go back to nor truncate the web browsing history forward of the displayed page. Using Ajax technologies the end user gets one dynamic page managed as a single page in the web browser while the actual web content rendered on that page can vary. The Ajax engine sits only on the browser requesting parts of its DOM, the DOM, for its client, from an application server.
Dynamic HTML, or DHTML, is the umbrella term for technologies and methods used to create web pages that are not static web pages, though it has fallen out of common use since the popularization of AJAX, a term which is now itself rarely used. Client-side-scripting, server-side scripting, or a combination of these make for the dynamic web experience in a browser.[citation needed]
JavaScript is a scripting language that was initially developed in 1995 by Brendan Eich, then of Netscape, for use within web pages.[50] The standardised version is ECMAScript.[50] To make web pages more interactive, some web applications also use JavaScript techniques such as Ajax (asynchronous JavaScript and XML). Client-side script is delivered with the page that can make additional HTTP requests to the server, either in response to user actions such as mouse movements or clicks, or based on elapsed time. The server's responses are used to modify the current page rather than creating a new page with each response, so the server needs only to provide limited, incremental information. Multiple Ajax requests can be handled at the same time, and users can interact with the page while data is retrieved. Web pages may also regularly poll the server to check whether new information is available.[51]
Websites can have many functions and can be used in various fashions; a website can be a personal website, a corporate website for a company, a government website, an organization website, etc. Websites are typically dedicated to a particular topic or purpose, ranging from entertainment and social networking to providing news and education. All publicly accessible websites collectively constitute the World Wide Web, while private websites, such as a company's website for its employees, are typically a part of an intranet.
Web pages, which are the building blocks of websites, are documents, typically composed in plain text interspersed with formatting instructions of Hypertext Markup Language (HTML, XHTML). They may incorporate elements from other websites with suitable markup anchors. Web pages are accessed and transported with the Hypertext Transfer Protocol (HTTP), which may optionally employ encryption (HTTP Secure, HTTPS) to provide security and privacy for the user. The user's application, often a web browser, renders the page content according to its HTML markup instructions onto a display terminal.
A web browser (commonly referred to as a browser) is a softwareuser agent for accessing information on the World Wide Web. To connect to a website's server and display its pages, a user needs to have a web browser program. This is the program that the user runs to download, format, and display a web page on the user's computer.
In addition to allowing users to find, display, and move between web pages, a web browser will usually have features like keeping bookmarks, recording history, managing cookies (see below), and home pages and may have facilities for recording passwords for logging into websites.
A Web server is server software, or hardware dedicated to running said software, that can satisfy World Wide Web client requests. A web server can, in general, contain one or more websites. A web server processes incoming network requests over HTTP and several other related protocols.
Multiple web servers may be used for a high traffic website; here, Dell servers are installed together to be used for the Wikimedia Foundation.
A user agent, commonly a web browser or web crawler, initiates communication by making a request for a specific resource using HTTP and the server responds with the content of that resource or an error message if unable to do so. The resource is typically a real file on the server's secondary storage, but this is not necessarily the case and depends on how the webserver is implemented.
While the primary function is to serve content, full implementation of HTTP also includes ways of receiving content from clients. This feature is used for submitting web forms, including uploading of files.
Many generic web servers also support scripting using Active Server Pages (ASP), PHP (Hypertext Preprocessor), or other scripting languages. This means that the behaviour of the webserver can be scripted in separate files, while the actual server software remains unchanged. Usually, this function is used to generate HTML documents dynamically ("on-the-fly") as opposed to returning static documents. The former is primarily used for retrieving or modifying information from databases. The latter is typically much faster and more easily cached but cannot deliver dynamic content.
Web servers can also frequently be found embedded in devices such as printers, routers, webcams and serving only a local network. The web server may then be used as a part of a system for monitoring or administering the device in question. This usually means that no additional software has to be installed on the client computer since only a web browser is required (which now is included with most operating systems).
Optical networking is a sophisticated infrastructure that utilizes optical fiber to transmit data over long distances, connecting countries, cities, and even private residences. The technology uses optical microsystems like tunable lasers, filters, attenuators, switches, and wavelength-selective switches to manage and operate these networks.[55][56]
The large quantity of optical fiber installed throughout the world at the end of the twentieth century set the foundation of the Internet as it is used today. The information highway relies heavily on optical networking, a method of sending messages encoded in light to relay information in various telecommunication networks.[57]
Limited public access to the Internet led to pressure from consumers and corporations to privatize the network. In 1993, the US passed the National Information Infrastructure Act, which dictated that the National Science Foundation must hand over control of the optical capabilities to commercial operators.[62][63]
The privatization of the Internet and the release of the World Wide Web to the public in 1993 led to an increased demand for Internet capabilities. This spurred developers to seek solutions to reduce the time and cost of laying new fiber and increase the amount of information that can be sent on a single fiber, in order to meet the growing needs of the public.[64][65][66][67]
In 1994, Pirelli S.p.A.'s optical components division introduced a wavelength-division multiplexing (WDM) system to meet growing demand for increased data transmission. This four-channel WDM technology allowed more information to be sent simultaneously over a single optical fiber, effectively boosting network capacity.[68][69]
Pirelli wasn't the only company that developed a WDM system; another company, the Ciena Corporation (Ciena), created its own technology to transmit data more efficiently. David Huber, an optical networking engineer and entrepreneur Kevin Kimberlin founded Ciena in 1992.[70][71][72] Drawing on laser technology from Gordon Gould and William Culver of Optelecom, Inc., the company focused on utilizing optical amplifiers to transmit data via light.[73][74][75] Under chief executive officer Pat Nettles, Ciena developed a dual-stage optical amplifier for dense wavelength-division multiplexing (DWDM), patented in 1997 and deployed on the Sprint network in 1996.[76][77][78][79][80]
An HTTP cookie (also called web cookie, Internet cookie, browser cookie, or simply cookie) is a small piece of data sent from a website and stored on the user's computer by the user's web browser while the user is browsing. Cookies were designed to be a reliable mechanism for websites to remember stateful information (such as items added in the shopping cart in an online store) or to record the user's browsing activity (including clicking particular buttons, logging in, or recording which pages were visited in the past). They can also be used to remember arbitrary pieces of information that the user previously entered into form fields such as names, addresses, passwords, and credit card numbers.
Cookies perform essential functions in the modern web. Perhaps most importantly, authentication cookies are the most common method used by web servers to know whether the user is logged in or not, and which account they are logged in with. Without such a mechanism, the site would not know whether to send a page containing sensitive information or require the user to authenticate themselves by logging in. The security of an authentication cookie generally depends on the security of the issuing website and the user's web browser, and on whether the cookie data is encrypted. Security vulnerabilities may allow a cookie's data to be read by a hacker, used to gain access to user data, or used to gain access (with the user's credentials) to the website to which the cookie belongs (see cross-site scripting and cross-site request forgery for examples).[81]
Tracking cookies, and especially third-party tracking cookies, are commonly used as ways to compile long-term records of individuals' browsing histories – a potential privacy concern that prompted European[82] and U.S. lawmakers to take action in 2011.[83][84] European law requires that all websites targeting European Union member states gain "informed consent" from users before storing non-essential cookies on their device.
Google Project Zero researcher Jann Horn describes ways cookies can be read by intermediaries, like Wi-Fi hotspot providers. When in such circumstances, he recommends using the browser in private browsing mode (widely known as Incognito mode in Google Chrome).[85]
The results of a search for the term "lunar eclipse" in a web-based image search engine
A web search engine or Internet search engine is a software system that is designed to carry out web search (Internet search), which means to search the World Wide Web in a systematic way for particular information specified in a web search query. The search results are generally presented in a line of results, often referred to as search engine results pages (SERPs). The information may be a mix of web pages, images, videos, infographics, articles, research papers, and other types of files. Some search engines also mine data available in databases or open directories. Unlike web directories, which are maintained only by human editors, search engines also maintain real-time information by running an algorithm on a web crawler. Internet content that is not capable of being searched by a web search engine is generally described as the deep web.
In 1990, Archie, the world's first search engine, was released. The technology was originally an index of File Transfer Protocol (FTP) sites, which was a method for moving files between a client and a server network.[86][87] This early search tool was superseded by more advanced engines like Yahoo! in 1995 and Google in 1998.[88][89]
The deep web,[90]invisible web,[91] or hidden web[92] are parts of the World Wide Web whose contents are not indexed by standard web search engines. The opposite term to the deep web is the surface web, which is accessible to anyone using the Internet.[93]Computer scientist Michael K. Bergman is credited with coining the term deep web in 2001 as a search indexing term.[94]
The content of the deep web is hidden behind HTTP forms,[95][96] and includes many very common uses such as web mail, online banking, and services that users must pay for, and which is protected by a paywall, such as video on demand, some online magazines and newspapers, among others.
The content of the deep web can be located and accessed by a direct URL or IP address and may require a password or other security access past the public website page.
A web cache is a server computer located either on the public Internet or within an enterprise that stores recently accessed web pages to improve response time for users when the same content is requested within a certain time after the original request. Most web browsers also implement a browser cache by writing recently obtained data to a local data storage device. HTTP requests by a browser may ask only for data that has changed since the last access. Web pages and resources may contain expiration information to control caching to secure sensitive data, such as in online banking, or to facilitate frequently updated sites, such as news media. Even sites with highly dynamic content may permit basic resources to be refreshed only occasionally. Web site designers find it worthwhile to collate resources such as CSS data and JavaScript into a few site-wide files so that they can be cached efficiently. Enterprise firewalls often cache Web resources requested by one user for the benefit of many users. Some search engines store cached content of frequently accessed websites.
For criminals, the Web has become a venue to spread malware and engage in a range of cybercrime, including (but not limited to) identity theft, fraud, espionage, and intelligence gathering.[97] Web-based vulnerabilities now outnumber traditional computer security concerns,[98][99] and as measured by Google, about one in ten web pages may contain malicious code.[100] Most web-based attacks take place on legitimate websites, and most, as measured by Sophos, are hosted in the United States, China and Russia.[101] The most common of all malware threats is SQL injection attacks against websites.[102] Through HTML and URIs, the Web was vulnerable to attacks like cross-site scripting (XSS) that came with the introduction of JavaScript[103] and were exacerbated to some degree by Web 2.0 and Ajax web design that favours the use of scripts.[104] In one 2007 estimate, 70% of all websites are open to XSS attacks on their users.[105]Phishing is another common threat to the Web. In February 2013, RSA (the security division of EMC) estimated the global losses from phishing at $1.5 billion in 2012.[106] Two of the well-known phishing methods are Covert Redirect and Open Redirect.
Proposed solutions vary. Large security companies like McAfee already design governance and compliance suites to meet post-9/11 regulations,[107] and some, like Finjan Holdings have recommended active real-time inspection of programming code and all content regardless of its source.[97] Some have argued that for enterprises to see Web security as a business opportunity rather than a cost centre,[108] while others call for "ubiquitous, always-on digital rights management" enforced in the infrastructure to replace the hundreds of companies that secure data and networks.[109]Jonathan Zittrain has said users sharing responsibility for computing safety is far preferable to locking down the Internet.[110]
Every time a client requests a web page, the server can identify the request's IP address. Web servers usually log IP addresses in a log file. Also, unless set not to do so, most web browsers record requested web pages in a viewable history feature, and usually cache much of the content locally. Unless the server-browser communication uses HTTPS encryption, web requests and responses travel in plain text across the Internet and can be viewed, recorded, and cached by intermediate systems. Another way to hide personally identifiable information is by using a virtual private network. A VPN encrypts traffic between the client and VPN server, and masks the original IP address, lowering the chance of user identification.
When a web page asks for, and the user supplies, personally identifiable information—such as their real name, address, e-mail address, etc. web-based entities can associate current web traffic with that individual. If the website uses HTTP cookies, username, and password authentication, or other tracking techniques, it can relate other web visits, before and after, to the identifiable information provided. In this way, a web-based organization can develop and build a profile of the individual people who use its site or sites. It may be able to build a record for an individual that includes information about their leisure activities, their shopping interests, their profession, and other aspects of their demographic profile. These profiles are of potential interest to marketers, advertisers, and others. Depending on the website's terms and conditions and the local laws that apply information from these profiles may be sold, shared, or passed to other organizations without the user being informed. For many ordinary people, this means little more than some unexpected emails in their inbox or some uncannily relevant advertising on a future web page. For others, it can mean that time spent indulging an unusual interest can result in a deluge of further targeted marketing that may be unwelcome. Law enforcement, counterterrorism, and espionage agencies can also identify, target, and track individuals based on their interests or proclivities on the Web.
Social networking sites usually try to get users to use their real names, interests, and locations, rather than pseudonyms, as their executives believe that this makes the social networking experience more engaging for users. On the other hand, uploaded photographs or unguarded statements can be identified to an individual, who may regret this exposure. Employers, schools, parents, and other relatives may be influenced by aspects of social networking profiles, such as text posts or digital photos, that the posting individual did not intend for these audiences. Online bullies may make use of personal information to harass or stalk users. Modern social networking websites allow fine-grained control of the privacy settings for each posting, but these can be complex and not easy to find or use, especially for beginners.[111] Photographs and videos posted onto websites have caused particular problems, as they can add a person's face to an online profile. With modern and potential facial recognition technology, it may then be possible to relate that face with other, previously anonymous, images, events, and scenarios that have been imaged elsewhere. Due to image caching, mirroring, and copying, it is difficult to remove an image from the World Wide Web.
Web standards include many interdependent standards and specifications, some of which govern aspects of the Internet, not just the World Wide Web. Even when not web-focused, such standards directly or indirectly affect the development and administration of websites and web services. Considerations include the interoperability, accessibility and usability of web pages and web sites.
Web standards, in the broader sense, consist of the following:
Web standards are not fixed sets of rules but are constantly evolving sets of finalized technical specifications of web technologies.[118] Web standards are developed by standards organizations—groups of interested and often competing parties chartered with the task of standardization—not technologies developed and declared to be a standard by a single individual or company. It is crucial to distinguish those specifications that are under development from the ones that already reached the final development status (in the case of W3C specifications, the highest maturity level).
There are methods for accessing the Web in alternative mediums and formats to facilitate use by individuals with disabilities. These disabilities may be visual, auditory, physical, speech-related, cognitive, neurological, or some combination. Accessibility features also help people with temporary disabilities, like a broken arm, or ageing users as their abilities change.[119] The Web is receiving information as well as providing information and interacting with society. The World Wide Web Consortium claims that it is essential that the Web be accessible, so it can provide equal access and equal opportunity to people with disabilities.[120] Tim Berners-Lee once noted, "The power of the Web is in its universality. Access by everyone regardless of disability is an essential aspect."[119] Many countries regulate web accessibility as a requirement for websites.[121] International co-operation in the W3C Web Accessibility Initiative led to simple guidelines that web content authors as well as software developers can use to make the Web accessible to persons who may or may not be using assistive technology.[119][122]
A global map of the Web Index for countries in 2014
The W3C Internationalisation Activity assures that web technology works in all languages, scripts, and cultures.[123] Beginning in 2004 or 2005, Unicode gained ground and eventually in December 2007 surpassed both ASCII and Western European as the Web's most frequently used character map.[124] Originally
RFC3986 allowed resources to be identified by URI in a subset of US-ASCII.
^ abQuittner, Joshua (29 March 1999). "Network Designer Tim Berners-Lee". Time Magazine. Archived from the original on 15 August 2007. Retrieved 17 May 2010. He wove the World Wide Web and created a mass medium for the 21st century. The World Wide Web is Berners-Lee's alone. He designed it. He set it loose it on the world. And he more than anyone else has fought to keep it an open, non-proprietary and free.[page needed]
^Rutter, Dorian (2005). From Diversity to Convergence: British Computer Networks and the Internet, 1970-1995(PDF) (Computer Science thesis). The University of Warwick. Archived(PDF) from the original on 10 October 2022. Retrieved 27 December 2022. When Berners-Lee developed his Enquire hypertext system during 1980, the ideas explored by Bush, Engelbart, and Nelson did not influence his work, as he was not aware of them. However, as Berners-Lee began to refine his ideas, the work of these predecessors would later confirm the legitimacy of his system.
^Tim Berners-Lee (1999). Weaving the Web. Internet Archive. HarperSanFrancisco. pp. 5–6. ISBN978-0-06-251586-5. Unbeknownst to me at that early stage in my thinking, several people had hit upon similar concepts, which were never implemented.
^Hoffman, Jay (21 April 1993). "The Origin of the IMG Tag". The History of the Web. Archived from the original on 13 February 2022. Retrieved 13 February 2022.
^Clarke, Roger. "The Birth of Web Commerce". Roger Clarke's Web-Site. XAMAX. Archived from the original on 15 February 2022. Retrieved 15 February 2022.
^Castelluccio, Michael (1 October 2010). "It's not your grandfather's Internet". Strategic Finance. Institute of Management Accountants. Archived from the original on 5 March 2016. Retrieved 7 February 2016 – via The Free Library.
^Muylle, Steve; Moenaert, Rudy; Despont, Marc (1999). "A grounded theory of World Wide Web search behaviour". Journal of Marketing Communications. 5 (3): 143. doi:10.1080/135272699345644.
^Flanagan, David. JavaScript – The definitive guide (6 ed.). p. 1. JavaScript is part of the triad of technologies that all Web developers must learn: HTML to specify the content of web pages, CSS to specify the presentation of web pages, and JavaScript to specify the behaviour of web pages.
^Korzeniowski, Paul (2 June 1997). "Record growth spurs demand for dense WDM -- Infrastructure bandwidth gears up for next wave". CommunicationsWeek. No. 666. p. T.40. ProQuest226891627.
^Hecht, Jeff (1999). City of light: the story of fiber optics. The Sloan technology series. New York: Oxford University Press. ISBN978-0-19-510818-7.
^US5696615A, Alexander, Stephen B., "Wavelength division multiplexed optical communication systems employing uniform gain optical amplifiers", issued 9 December 1997
^Hecht, Jeff (2004). City of light: the story of fiber optics. The Sloan technology series (Rev. and expanded ed., 1. paperback [ed.] ed.). Oxford: Oxford Univ. Press. ISBN978-0-19-510818-7.
^Devine, Jane; Egger-Sider, Francine (July 2004). "Beyond google: the invisible web in the academic library". The Journal of Academic Librarianship. 30 (4): 265–269. doi:10.1016/j.acalib.2004.04.010.
^Raghavan, Sriram; Garcia-Molina, Hector (11–14 September 2001). "Crawling the Hidden Web". 27th International Conference on Very Large Data Bases. Archived from the original on 17 August 2019. Retrieved 18 February 2019.
^"Surface Web". Computer Hope. Archived from the original on 5 May 2020. Retrieved 20 June 2018.
^Madhavan, J., Ko, D., Kot, Ł., Ganapathy, V., Rasmussen, A., & Halevy, A. (2008). Google's deep web crawl. Proceedings of the VLDB Endowment, 1(2), 1241–52.
^O'Reilly, Tim (30 September 2005). "What Is Web 2.0". O'Reilly Media. pp. 4–5. Archived from the original on 28 June 2012. Retrieved 4 June 2008. and AJAX web applications can introduce security vulnerabilities like "client-side security controls, increased attack surfaces, and new possibilities for Cross-Site Scripting (XSS)", in Ritchie, Paul (March 2007). "The security risks of AJAX/web 2.0 applications"(PDF). Infosecurity. Archived from the original(PDF) on 25 June 2008. Retrieved 6 June 2008. which cites Hayre, Jaswinder S. & Kelath, Jayasankar (22 June 2006). "Ajax Security Basics". SecurityFocus. Archived from the original on 15 May 2008. Retrieved 6 June 2008.
Among Web professionals, "Web development" usually refers to the main non-design aspects of building Web sites: writing markup and coding.[2] Web development may use content management systems (CMS) to make content changes easier and available with basic technical skills.
For larger organizations and businesses, Web development teams can consist of hundreds of people (Web developers) and follow standard methods like Agile methodologies while developing Web sites.[1] Smaller organizations may only require a single permanent or contracting developer, or secondary assignment to related job positions such as a graphic designer or information systems technician. Web development may be a collaborative effort between departments rather than the domain of a designated department. There are three kinds of Web developer specialization: front-end developer, back-end developer, and full-stack developer.[3] Front-end developers are responsible for behavior and visuals that run in the user browser, while back-end developers deal with the servers.[4] Since the commercialization of the Web, the industry has boomed and has become one of the most used technologies ever.
Evolution of the World Wide Web and web development
The primary goal in the development of the Web was to fulfill the automated information-sharing needs of academics affiliated with institutions and various global organizations. Consequently, HTML was developed in 1993.[6]
Web 1.0 is described as the first paradigm wherein users could only view material and provide a small amount of information.[7] Core protocols of web 1.0 were HTTP, HTML and URI.[8]
Web 2.0, a term popularised by Dale Dougherty, then vice president of O'Reilly, during a 2004 conference with Media Live, marks a shift in internet usage, emphasizing interactivity.[9][10]
Web 2.0 introduced increased user engagement and communication. It evolved from the static, read-only nature of Web 1.0 and became an integrated network for engagement and communication. It is often referred to as a user-focused, read-write online network.[7]
In the realm of Web 2.0 environments, users now have access to a platform that encourages sharing activities such as creating music, files, images, and movies.[11] The architecture of Web 2.0 is often considered the "backbone of the internet," using standardized XML (Extensible Markup Language) tags to authorize information flow from independent platforms and online databases.[7]
Web 3.0, considered the third and current version of the web, was introduced in 2014. The concept envisions a complete redesign of the web. Key features include the integration of metadata, precise information delivery, and improved user experiences based on preferences, history, and interests.[citation needed]
Web 3.0 aims to turn the web into a sizable, organized database, providing more functionality than traditional search engines. Users can customize navigation based on their preferences, and the core ideas involve identifying data sources, connecting them for efficiency, and creating user profiles.[7]
The journey of web development technologies began with simple HTML pages in the early days of the internet. Over time, advancements led to the incorporation of CSS for styling and JavaScript for interactivity. This evolution transformed static websites into dynamic and responsive platforms, setting the stage for the complex and feature-rich web applications we have today.
Web development in future will be driven by advances in browser technology, Web internet infrastructure, protocol standards, software engineering methods, and application trends.[8]
The web development life cycle is a method that outlines the stages involved in building websites and web applications. It provides a structured approach, ensuring optimal results throughout the development process.[citation needed]
A typical Web Development process can be divided into 7 steps.
Debra Howcraft and John Carroll proposed a methodology in which web development process can be divided into sequential steps. They mentioned different aspects of analysis.[17]
Phase one involves crafting a web strategy and analyzing how a website can effectively achieve its goals. Keil et al.'s research[18] identifies the primary reasons for software project failures as a lack of top management commitment and misunderstandings of system requirements. To mitigate these risks, Phase One establishes strategic goals and objectives, designing a system to fulfill them. The decision to establish a web presence should ideally align with the organization's corporate information strategy.
The analysis phase can be divided into 3 steps:
Development of a web strategy
Defining objectives
Objective analysis
During this phase, the previously outlined objectives and available resources undergo analysis to determine their feasibility. This analysis is divided into six tasks, as follows:
Technology analysis: Identification of all necessary technological components and tools for constructing, hosting, and supporting the site.
Information analysis: Identification of user-required information, whether static (web page) or dynamic (pulled "live" from a database server).
Skills analysis: Identification of the diverse skill sets necessary to complete the project.
User analysis: Identification of all intended users of the site, a more intricate process due to the varied range of users and technologies they may use.
Cost analysis: Estimation of the development cost for the site or an evaluation of what is achievable within a predefined budget.
Risk analysis: Examination of any major risks associated with site development.
Following this analysis, a more refined set of objectives is documented. Objectives that cannot be presently fulfilled are recorded in a Wish List, constituting part of the Objectives Document. This documentation becomes integral to the iterative process during the subsequent cycle of the methodology.[17]
It is crucial for web developers to be engaged in formulating a plan and determining the optimal architecture and selecting the frameworks.[citation needed] Additionally, developers/consultants play a role in elucidating the total cost of ownership associated with supporting a website, which may surpass the initial development expenses.
Following the analysis phase, the development process moves on to the design phase, which is guided by the objectives document. Recognizing the incremental growth of websites and the potential lack of good design architecture, the methodology includes iteration to account for changes and additions over the life of the site. The design phase, which is divided into Information Design and Graphic Design, results in a detailed Design Document that details the structure of the website, database data structures, and CGI scripts.*
The following step, design testing, focuses on early, low-cost testing to identify inconsistencies or flaws in the design. This entails comparing the website's design to the goals and objectives outlined in the first three steps. Phases One and Two involve an iterative loop in which objectives in the Objectives Document are revisited to ensure alignment with the design. Any objectives that are removed are added to the Wish List for future consideration.[17]
No matter how visually appealing a website is, good communication with clients is critical. The primary purpose of content production is to create a communication channel through the user interface by delivering relevant information about your firm in an engaging and easily understandable manner. This includes:[citation needed]
Developing appealing calls to action
Making creative headlines
Content formatting for readability
Carrying out line editing
Text updating throughout the site development process.
The stage of content production is critical in establishing the branding and marketing of your website or web application. It serves as a platform for defining the purpose and goals of your online presence through compelling and convincing content.
During this critical stage, the website is built while keeping its fundamental goal in mind, paying close attention to all graphic components to assure the establishment of a completely working site.
The procedure begins with the development of the main page, which is followed by the production of interior pages. The site's navigational structure is being refined in particular.
During this development phase, key functionality such as the Content Management System, interactive contact forms, and shopping carts are activated.
The coding process includes creating all of the site's software and installing it on the appropriate Web servers. This can range from simple things like posting to a Web server to more complex tasks like establishing database connections.
In any web project, the testing phase is incredibly intricate and difficult. Because web apps are frequently designed for a diverse and often unknown user base running in a range of technological environments, their complexity exceeds that of traditional Information Systems (IS). To ensure maximum reach and efficacy, the website must be tested in a variety of contexts and technologies. The website moves to the delivery stage after gaining final approval from the designer. To ensure its preparation for launch, the quality assurance team performs rigorous testing for functionality, compatibility, and performance.
Additional testing is carried out, including integration, stress, scalability, load, resolution, and cross-browser compatibility. When the approval is given, the website is pushed to the server via FTP, completing the development process.
The web development process goes beyond deployment to include a variety of post-deployment tasks.
Websites, in example, are frequently under ongoing maintenance, with new items being uploaded on a daily basis. The maintenance costs increases immensely as the site grows in size. The accuracy of content on a website is critical, demanding continuous monitoring to verify that both information and links, particularly external links, are updated. Adjustments are made in response to user feedback, and regular support and maintenance actions are carried out to maintain the website's long-term effectiveness.[17]
Debra Howcraft and John Carroll discussed a few traditional web development methodologies in their research paper:[17]
Waterfall: The waterfall methodology comprises a sequence of cascading steps, addressing the development process with minimal iteration between each stage. However, a significant drawback when applying the waterfall methodology to the development of websites (as well as information systems) lies in its rigid structure, lacking iteration beyond adjacent stages. Any methodology used for the development of Web-sites must be flexible enough to cope with change.[17]
Structured Systems Analysis and Design Method (SSADM):Structured Systems Analysis and Design Method (SSADM) is a widely used methodology for systems analysis and design in information systems and software engineering. Although it does not cover the entire lifecycle of a development project, it places a strong emphasis on the stages of analysis and design in the hopes of minimizing later-stage, expensive errors and omissions.[17]
Prototyping:Prototyping is a software development approach in which a preliminary version of a system or application is built to visualize and test its key functionalities. The prototype serves as a tangible representation of the final product, allowing stakeholders, including users and developers, to interact with it and provide feedback.
Rapid Application Development:Rapid Application Development (RAD) is a software development methodology that prioritizes speed and flexibility in the development process. It is designed to produce high-quality systems quickly, primarily through the use of iterative prototyping and the involvement of end-users. RAD aims to reduce the time it takes to develop a system and increase the adaptability to changing requirements.
Incremental Prototyping: Incremental prototyping is a software development approach that combines the principles of prototyping and incremental development. In this methodology, the development process is divided into small increments, with each increment building upon the functionality of the previous one. At the same time, prototypes are created and refined in each increment to better meet user requirements and expectations.
The goal of front-end development is to create a website's user interface and visual components that users may interact with directly. On the other hand, back-end development works with databases, server-side logic, and application functionality. Building reliable and user-friendly online applications requires a comprehensive approach, which is ensured by collaboration between front-end and back-end engineers.
Front-end development is the process of designing and implementing the user interface (UI) and user experience (UX) of a web application. It involves creating visually appealing and interactive elements that users interact with directly. The primary technologies and concepts associated with front-end development include:
The 3 core technologies for front-end development are:
HTML (Hypertext Markup Language):HTML provides the structure and organization of content on a webpage.
CSS (Cascading Style Sheet): Responsible for styling and layout, CSS enhances the presentation of HTML elements, making the application visually appealing.
JavaScript: It is used to add interactions to the web pages. Advancement in JavaScript has given rise to many popular front- end frameworks like React, Angular and Vue.js etc.
User experience design focuses on creating interfaces that are intuitive, accessible, and enjoyable for users. It involves understanding user behavior, conducting usability studies, and implementing design principles to enhance the overall satisfaction of users interacting with a website or application. This involves wireframing, prototyping, and implementing design principles to enhance user interaction. Some of the popular tools used for UI Wireframing are -
Another key aspect to keep in mind while designing is Web Accessibility- Web accessibility ensures that digital content is available and usable for people of all abilities. This involves adhering to standards like the Web Content Accessibility Guidelines (WCAG), implementing features like alternative text for images, and designing with considerations for diverse user needs, including those with disabilities.
It is important to ensure that web applications are accessible and visually appealing across various devices and screen sizes. Responsive design uses CSS media queries and flexible layouts to adapt to different viewing environments.
A framework is a high-level solution for the reuse of software pieces, a step forward in simple library-based reuse that allows for sharing common functions and generic logic of a domain application.[19]
Frameworks and libraries are essential tools that expedite the development process. These tools enhance developer productivity and contribute to the maintainability of large-scale applications. Some popular front-end frameworks are:
React: A JavaScript library for building user interfaces, maintained by Facebook. It allows developers to create reusable UI components.
Angular: A TypeScript-based front-end framework developed and maintained by Google. It provides a comprehensive solution for building dynamic single-page applications.
Vue.js: A progressive JavaScript framework that is approachable yet powerful, making it easy to integrate with other libraries or existing projects.
Managing the state of a web application to ensure data consistency and responsiveness. State management libraries like Redux (for React) or Vuex (for Vue.js) play a crucial role in complex applications.
Back-end development involves building the server-side logic and database components of a web application. It is responsible for processing user requests, managing data, and ensuring the overall functionality of the application. Key aspects of back-end development include:
An essential component of the architecture of a web application is a server or cloud instance. A cloud instance is a virtual server instance that can be accessed via the Internet and is created, delivered, and hosted on a public or private cloud. It functions as a physical server that may seamlessly move between various devices with ease or set up several instances on one server. It is therefore very dynamic, scalable, and economical.
Database management is crucial for storing, retrieving, and managing data in web applications. Various database systems, such as MySQL, PostgreSQL, and MongoDB, play distinct roles in organizing and structuring data. Effective database management ensures the responsiveness and efficiency of data-driven web applications. There are 3 types of databases:
Relational databases: Structured databases that use tables to organize and relate data. Common Examples include - MySQL, PostgreSQL and many more.
Document stores:Document stores store data in a semi-structured format, typically using JSON or XML documents. Each document can have a different structure, providing flexibility. Examples:MongoDB, CouchDB.
Key-value stores:Key-value stores store data as pairs of keys and values. They are simple and efficient for certain types of operations, like caching. Examples: Redis, DynamoDB.
Graph databases:Graph databases are designed to represent and query data in the form of graphs. They are effective for handling relationships and network-type data. Examples: Neo4j, Amazon Neptune.
In-memory databases:In-memory databases store data in the system's main memory (RAM) rather than on disk. This allows for faster data access and retrieval. Examples: Redis, Memcached.
Time-series databases:Time-series databases are optimized for handling time-stamped data, making them suitable for applications that involve tracking changes over time. Examples: InfluxDB, OpenTSDB.
NewSQL databases:NewSQL databases aim to provide the scalability of NoSQL databases while maintaining the ACID properties (Atomicity, Consistency, Isolation, Durability) of traditional relational databases. Examples: Google Spanner, CockroachDB.
Object-oriented databases:Object-oriented databases store data in the form of objects, which can include both data and methods. They are designed to work seamlessly with object-oriented programming languages. Examples: db4o, ObjectDB.
The choice of a database depends on various factors such as the nature of the data, scalability requirements, performance considerations, and the specific use case of the application being developed. Each type of database has its strengths and weaknesses, and selecting the right one involves considering the specific needs of the project.
Application Programming Interfaces are sets of rules and protocols that allow different software applications to communicate with each other. APIs define the methods and data formats that applications can use to request and exchange information.
RESTful APIs and GraphQL are common approaches for defining and interacting with web services.
Web APIs: These are APIs that are accessible over the internet using standard web protocols such as HTTP. RESTful APIs are a common type of web API.
Library APIs: These APIs provide pre-built functions and procedures that developers can use within their code.
Operating System APIs: These APIs allow applications to interact with the underlying operating system, accessing features like file systems, hardware, and system services.
Programming languages aimed at server execution, as opposed to client browser execution, are known as server-side languages. These programming languages are used in web development to perform operations including data processing, database interaction, and the creation of dynamic content that is delivered to the client's browser. A key element of server-side programming is server-side scripting, which allows the server to react to client requests in real time.
Some popular server-side languages are:
PHP:PHP is a widely used, open-source server-side scripting language. It is embedded in HTML code and is particularly well-suited for web development.
Python:Python is a versatile, high-level programming language used for a variety of purposes, including server-side web development. Frameworks like Django and Flask make it easy to build web applications in Python.
Ruby:Ruby is an object-oriented programming language, and it is commonly used for web development. Ruby on Rails is a popular web framework that simplifies the process of building web applications.
Java:Java is a general-purpose, object-oriented programming language. Java-based frameworks like Spring are commonly used for building enterprise-level web applications.
Node.js (JavaScript): While JavaScript is traditionally a client-side language, Node.js enables developers to run JavaScript on the server side. It is known for its event-driven, non-blocking I/O model, making it suitable for building scalable and high-performance applications.
C# (C Sharp):C# is a programming language developed by Microsoft and is commonly used in conjunction with the .NET framework for building web applications on the Microsoft stack.
ASP.NET:ASP.NET is a web framework developed by Microsoft, and it supports languages like C# and VB.NET. It simplifies the process of building dynamic web applications.
Go (Golang):Go is a statically typed language developed by Google. It is known for its simplicity and efficiency and is increasingly being used for building scalable and high-performance web applications.
Perl:Perl is a versatile scripting language often used for web development. It is known for its powerful text-processing capabilities.
Swift: Developed by Apple, Swift is used for server-side development in addition to iOS and macOS app development.
Lua:Lua is used for some embedded web servers, e.g. the configuration pages on a router, including OpenWRT.
Thorough testing and debugging processes are essential for identifying and resolving issues in a web application. Testing may include unit testing, integration testing, and user acceptance testing. Debugging involves pinpointing and fixing errors in the code, ensuring the reliability and stability of the application.
Unit Testing: Testing individual components or functions to verify that they work as expected.
Integration Testing: Testing the interactions between different components or modules to ensure they function correctly together.
Continuous Integration and Deployment (CI/CD):CI/CD pipelines automate testing, deployment, and delivery processes, allowing for faster and more reliable releases.
Full-stack development refers to the practice of designing, building, and maintaining the entire software stack of a web application. This includes both the frontend (client-side) and backend (server-side) components, as well as the database and any other necessary infrastructure. A full-stack developer is someone who has expertise in working with both the frontend and backend technologies, allowing them to handle all aspects of web application development.
MEAN (MongoDB, Express.js, Angular, Node.js) and MERN (MongoDB, Express.js, React, Node.js) are popular full-stack development stacks that streamline the development process by providing a cohesive set of technologies.
Version control:Git is a widely used version control system that allows developers to track changes, collaborate seamlessly, and roll back to previous versions if needed.
Security is paramount in web development to protect against cyber threats and ensure the confidentiality and integrity of user data. Best practices include encryption, secure coding practices, regular security audits, and staying informed about the latest security vulnerabilities and patches.
Secure coding practices: Adhering to secure coding practices involves input validation, proper data sanitization, and ensuring that sensitive information is stored and transmitted securely.
Authentication and authorization: Implementing robust authentication mechanisms, such as OAuth or JSON Web Tokens (JWT), ensures that only authorized users can access specific resources within the application.
Agile is a set of principles and values for software development that prioritize flexibility, collaboration, and customer satisfaction. The four key values are:
Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Iterative and incremental development: Building and refining a web application through small, repeatable cycles, enhancing features incrementally with each iteration.
Scrum and kanban: Employing agile frameworks like Scrum for structured sprints or Kanban for continuous flow to manage tasks and enhance team efficiency.
Cross-functional teams: Forming collaborative teams with diverse skill sets, ensuring all necessary expertise is present for comprehensive web development.
Customer collaboration: Engaging customers throughout the development process to gather feedback, validate requirements, and ensure the delivered product aligns with expectations.
Adaptability to change: Embracing changes in requirements or priorities even late in the development process to enhance the product's responsiveness to evolving needs.
User stories and backlog: Capturing functional requirements through user stories and maintaining a backlog of prioritized tasks to guide development efforts.
Continuous integration and continuous delivery (CI/CD): Implementing automated processes to continuously integrate code changes and deliver updated versions, ensuring a streamlined and efficient development pipeline.
What is the cost of a custom website design in Parramatta?
Website Design Parramatta costs vary based on complexity, functionality, and customisation level. Entry-level brochure websites typically start from AUD 2,500, while more advanced solutions—such as eCommerce platforms or custom web applications—range between AUD 5,000 to AUD 15,000. Each quote includes discovery, design mockups, development, on-page SEO optimisation for “custom website design Parramatta,” and responsive testing across devices. We provide transparent, fixed-price proposals with no hidden fees. For an accurate estimate tailored to your Parramatta business needs, contact our team for a free consultation.